Статика

Статика - это раздел механики, который занимается изучением равновесия

плечо и условия равновесия

Плечо силы

Плечо силы - это длина перпендикуляра из некоторой вымышленной точки О к силе. Вымышленный центр, точку О, будем выбирать произвольно, моменты каждой силы определяем относительно этой точки. Нельзя для определения моментов одних сил выбрать одну точку О, а для нахождения моментов других сил выбрать ее в другом месте!

На камень действуют сила тяжести, сила трения, сила реакции опоры, две дополнительные внешние силы F1 и F2

Выбираем точку О в произвольном месте, больше ее местоположение не изменяем. Тогда плечо силы тяжести - это длина перпендикуляра (отрезок d) на рисунке

Плечо силы реакции опоры определяется аналогично

Если перпендикуляр нет возможности построить, то вектор силы продлевается в необходимом направлении, после чего строим перпендикуляр к этой линии. Плечо силы F2

Плечо силы F1

Осталась сила трения! Если точка О и сила лежат на одной линии, то плечо этой силы равно нулю. Плечо силы трения равно нулю.

При решении задач выгодно точку О выбирать в точке пересечения нескольких сил. Тогда плечи всех этих сил будут нулевыми. Например, если точку О в предыдущем примере выбрать иначе, то плечи сил будут иными.

Плечи сил F1, F2 и силы тяжести равны нулю, так как точка О лежит с ними на одной прямой (или на самой силе). Плечо силы реакции опоры - это длина d1. Плечо силы трения - это длина d2.

Момент силы

Это векторная величина, определяется по формуле

Направление вектора момента силы определяется следующим образом. Представляем в какую сторону сила пытается повернуть (тащить) тело относительно точки О, если тело с точкой О закреплены осью. Если по часовой стрелки, то вектор имеет знак "+", если против часовой, тогда знак "-".

Момент силы реакции опоры отрицательный, так как сила реакции опоры "поворачивает" тело против часовой стрелки

Момент силы тяжести положительный, так как сила тяжести "поворачивает" тело по часовой стрелки

Если точка О выбрана на теле

Момент силы реакции опоры и силы трения положительные, так как силы "поворачивают" тело по часовой стрелки

Равновесие

Состояние тела, которое не изменяется со временем. Например, тело длительно находится в покое или движется равномерно, или длительно вращается.

Первое условие равновесия

Векторная сумма всех действующих на тело сил равна нулю.

Рассмотрим на примере первое условие равновесия

Предмет будет находиться в равновесии, если векторная сумма всех сил (Fтр1, Fтр2, N1, N2, mg) равна нулю. То есть

Второе условие равновесия

Векторная сумма моментов сил равна нулю

Точку О выберем в точке пересечения Fтр2 и N2. Плечи этих сил равны нулю, значит и моменты этих сил равны нулю.

Определяем плечи сил Fтр1, N1 и mg и направление моментов сил (положительное или отрицательное).

Виды равновесия. Опрокидывание.

Равновесие бывает устойчивым (тело возвращается в свое первоначальное положение), неустойчивым (тело не возвращается в свое первоначальное состояние), безразличное (тело остается в равновесии, несмотря на то, что на него подействовали (например переложили книгу из одного места на столе в другое). Тело стремится занять такое состояние, при котором его потенциальная энергия будет минимальной, центр масс стремиться быть ниже.

1 - безразличное равновесие, 2 - неустойчивое равновесие, 3 - устойчивое равновесие

На рисунке изображено условие опрокидывания тела.

Тело слева возвращается в исходное состояние. Тело справа опрокидывается.

Тело, имеющее площадь опоры, находится в состоянии устойчивого равновесия, если вертикаль, проведенная через центр масс этого тела, не выходит за рамки контура, ограниченного точками соприкосновения тела с опорой. Если же эта вертикаль проходит вне указанного контура, тело опрокидывается.

Центр тяжести

Центр тяжести тела - точка приложения силы тяжести (равнодействующей гравитационных сил).

Пусть тело состоит из двух шаров массами m1 и m2, насаженных на стержень, массой стержня можно пренебречь.

Система будет в равновесии, если опору разместить в центре тяжести, точке С. В этом случае векторная сумма моментов сил относительно точки С равна нулю, получим

Центр тяжести делит расстояние между двумя грузами в отношении, обратном отношению их масс.

Центр масс

Центр масс - точка пересечения прямых, вдоль которых действуют внешние силы, вызывающие поступательное движение тела. Это более общее понятие, чем понятие центра тяжести. Центр тяжести и центр масс часто совпадают. Центр масс симметричных тел находится в их геометрическом центре.

Определение центра масс

Определение центра масс. Если тело можно разбить на n элементов, массы которых m1, m2, ... , mn и если известны координаты центров масс этих элементов x1, x2, ..., xn, то координата масс тела вычисляется по формуле:

Такое же соотношение можно записать для yC и zC.

По материалам сайта fizmat.by